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Dynamic Characteristics of a Damaged Plate

Usik Lee*, Namin Kim, Oh-Yang Kwon
Department of Mechanical Engineering, Inha University, Incheon 402-751, Korea

It is very important to well understand the dynamic characteristics of damaged structures to
successfully develop or to choose a most appropriate structural damage identification method
(SDIM) as the means of non-destructive testing. In this paper, the dynamic equation of motion
for damaged plates is derived by introducing a damage distribution function, which may
characterize the effective state of structural damages. It is found that structural damages may
induce the coupling between modal coordinates. The effects of damages on the vibration
characteristics of a plate depending on their locations, sizes, and magnitudes are numerically
investigated in a systematic way. The numerical investigations are also given to the effects of
damage-induced modal coupling on the changes in vibration characteristics and to the minimum
number of natural modes required to predict sufficiently accurate vibration characteristics of
damaged plates.
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1. Introduction

Structural damages may lead to the changes in
dynamic characteristics of a structure such as the
vibration response, natural frequency, mode
shape, and the modal damping. The changes in
dynamic characteristics of the structure can be
used in turn to detect, locate and quantify the
structural damages generated within the structure
(Doebling et al., 1998). Thus, it is very important
to well understand the dynamic characteristics of
damaged structures to successfully develop or to
choose an appropriate SDIM as the means of non
-destructive testing.

In recent years, there have been many studies
on the vibration analysis of cracked one­
dimensional structures. The extensive review can
be found in the article by Dimarogonas (1996).
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The natural frequency changes of beams due to
cracks, notches, or other geometrical changes
were investigated analytically by Gudmundson
(1982) and Sato (1983), and experimentally by
Divini et al. (1995). For structural damage
identifications, the changes in natural frequencies,
mode shapes, and curvature mode shapes due to
the existence of damages (depending on their
locations and dimensions) have been investigated
by other researchers (e. g., Weissenburger, 1968;
Yuen, 1985; Pandey et al., 1991; Davini et al.,
1995; Banks et al., 1996; Luo and Hanagud, 1997;
Lee at al., 2000). Most of previous studies have
been confined to the structures such as beams,
truss structures, and frame structures.

The analytical approach for the vibrations of
cracked rectangular plates was first carried out by
Lynn and Kumbasar (1967) and then advanced
by Stahl and Keer (1972). The numerical study
has been suggested by Chen (1984) using hybrid
-displacement FEM and by Leung and Su (1996)
using a fractal two level FEM. With no emphasis
on crack detection application, Lee and Lim
(1993) investigated the vibration of rectangular
plate with a centrally located crack. Very recently,
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Khadem and Rezaee (2000) introduced an

analytical approach to observe the vibration of

the rectangular plate with all-over part-through

crack. In summary, to the authors' best knowl­

edge, the major concern in the previous studies on

cracked or damaged plates has been in the devel­

opment of solution methods or to investigate

vibration characteristics of the plates with very
specific cracks.

The purpose of the present paper is to investi­

gate the effects of structural damages on the

dynamic characteristics of damaged plates
depending on their locations and magnitudes. The

effects of damage-induced modal coupling as well

as the effects of the modal parameters of intact

plate on the accuracy of the predicted dynamic

characteristics of damaged plates are also
investigated.

2. Dynamics of Damaged Plates

For most practical problems, it would be diffi­

cult to assign a definitive representation for the

stiffness of a damaged area because the location,

dimensions, and geometry of the damaged site are

unknown in prior. Thus, one of the simplest

approaches is to represent the damage-induced

change in stiffness by the degradation of the
elastic modulus at damage locations (Yuen, 1985;

Banks et al. , 1996; Luo and Hanagud, 1997).

E(x, y) =E[l-d(x, y)] (4)

where E is the effective Young's modulus for

damaged material, and d (x, y) is the damage
distribution function which may implicitly

characterize the states of local damages. The case

d ix, y) =0 indicates the intact state, while d i»,
y) = 1 indicates the complete ruptures of material
at damage locations. Using Eq. (4), the flexural

rigidity for damaged plates can be expressed in

the form

K(x,y)=K[l-d(x,y)] (5)

where E and II are Young's modulus and

Poisson's ratio for intact material, respectively.

2.1 Dynamic equation of motion for
damaged plates

Consider an elastic, isotropic, and thin rectan­

gular plate with the width a, the length b, and the

thickness h. For small amplitude vibration, the
dynamic equation of motion for the plate is given
by (Yu, 1996)

JlMx+2 JlMJCY + JlMy+ f( t)-" (1)---axr JxJy ayr x, y, -mw

where uit», y, t) is the flexural deflection, f i;»,
y, t) the external force applied normal to the

surface of plate, m is the mass density per area,

and dot ( .) denotes the partial derivative with

respect to time t . The moment resultants M«; MJCY,
and My are defined, respectively, by

Mr = - K[ ~xlf +11 ~I ]. My =- K[ 11 ~iI +~I ].
M =-K(l-II) Jlw (2)

JCY JxJy

where K is the flexural rigidity for intact plates,

which is given by
2.2 Dynamic responses of intact plates
By putting d=O in Eq. (6), the dynamic equa­

tion of motion for intact plates is obtained as

(7)KV'4w+ mw=f(x, y, t)

where V'4 denotes the biharmonic operator. For

intact plates, the second term in the left side of Eq.
(6) vanishes. In this study, it is assumed that there

are no damages along the boundaries of plate.

Thus, the boundary conditions for intact plates

can be equally applied to damaged plates.

It will be reasonable to assume that structural

damages do not change the mass distribution
because they will result in stiffness losses instead

of complete breakage with a loss of mass (Yuen,

1985; Pandey et al, 1991). Thus, replacing the

intact flexural rigidity Kin Eq. (2) with the value
for damaged state K of Eq. (5) and substituting

Eq. (2) into Eq. (1) may yield a governing

equation of motion for damaged plates as follows:

KV4W-K{fr[d(-~-+~]]+2:Jy[d(l-v) r~]

+ t2[d[II~X~ +~y~JJ}+mw=f(x, y, t)

(6)

(3)K
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where

where

(8) .

(21)

Aa_=KJJ{t[d(-~-+/;' )]+2:ay[dO-v) ~~]

+a$-[d[z, t1Ja + ~1t'a JJ} Wlldxdy (19)

The matrix Aall' called herein 'damage influence
matrix (DIM) " is symmetric and depends on the

mode shape curvatures and damage distribution

function d (z; y). It can be observed from Eq.

(I8) that the off-diagonal terms of DIM induce

the coupling between modal coordinates, which is

Equation (18) says that the natural frequencies of

damaged plate, fJa, can be obtained from

det[ (Q~ - ~) aall'- Aa,sl=0 (20)

The last term in the left side of Eq. (18) reflects

the influence of damage, which is characterized by

the matrix Aall. Applying the integration by parts
for two-dimensional problem into Eq. (19) and

assuming that there are no damages along the

boundaries, the matrix Aall can be expressed as

where qa are the modal coordinates for the

damaged plate. Substituting Eq. (I7) into Eq. (6)

and applying the orthogonality property for nat­

ural modes yields the modal equations as

qa+~qa-~Aallq~=fa(t) (18)
II

2.3 Dynamic responses of damaged plates

Dynamic equation of motion for damaged

plates is given by Eq. (6). Assume that the same

harmonic point force that is applied to a plate of

intact state is consistently applied to the plate of

damaged state. The forced vibration response of a

damaged plate can be obtained by superposing

the natural modes for its intact state as (Dowell,

1975; Meirovitch, 1980):

w(x, Y, t)=~ Wa(x, y)qa(t) (17)
a

W(X, s. t)=~~ WlIIlI(X, y)qlllll(t):2~ Wa(X, y)qa(t) (8)
II n a

where Qa are the natural frequencies of intact

plate and aa~ is the Kronecker delta.
Substituting Eq. (8) into Eq. (7) and applying

the orthogonality property for natural modes

yields the modal equations as

qa+~ qa=fa(t) (12)

where fa are modal (or generalized) forces

defined by

fait) =f ff(x, y, t) Wadxdy (13)

The forced vibration response of an intact plate

can be obtained by superposing its natural modes

as

fait) = Wa (XF, YF)Fse'" (IS)

From Eqs. (12) and (IS), the modal coordinates

can be obtained as

qa. (t) Wa(XF, YF) FieibJt=Q e'" (16).Q;-w2 0 - a

The forced vibration response for an intact plate

~an be obtained by substituting Eq. (16) into Eq.

Assume that a harmonic point force is applied at

a specified point (XF, YF) as

I(x, v, t) =F(x, y)etJ#t=FoJ(X-XF) a(Y-YF)e'" (14)

where Fo and ware the amplitude and (circular)

frequency of the excitation force, respectively.
Substituting Eq. (14) into Eq. (13) gives the

modal forces in the form

where Wmn (or Wa) and qmn (or qa) are the

natural modes and modal (or generalized)

coordinates for the intact plate. As shown in the

far right side of Eq. (8), the contracted subscripts

for natural mode numbers will be consistently

used in the following for brevity: i. e., a for mn

and f3 for rs.
The natural modes Wa should satisfy the

eigenvalue problem for intact plate as

K\74Wa=mQ~ Wa (9)

and the orthogonality property

f fmWa ~dxdy=Ja~ (10)

f fKW~V'4WadXdy=~aall (Il)
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(29)

called herein 'damage-induced modal coupling

(DIMC) '. To the authors' best knowledge, the

DIMC has been neither introduced nor discussed

in the previous literature.

Assume the general solutions of Eq. (18) in the

form

(23)

where Qa are the modal coordinates for intact

plate and 6.Qa are the small perturbations of qa
due to the presence of damages. Substituting Eq.
(23) into Eq. (18) yields

6.qa+.Q~6.Qa-2: Aap6..Qp~2: AapQpe ibJt (24)
p p

where Qp are given by Eq. (16). Equation (24)

can be solved for t1Qa to obtain

6.Qa (t) = ~ ~[(Jla - CJi) Oar- Aar]-l'\~Qpe"t (25)
p r

Because the third term ~kp6..Qp in the left side of

Eq. (24) is very small when compared with the

other terms, it can be neglected to obtain the

approximation as

readily extended to any damage distribution over

the plate, we assume here that damages are uni­

form through the thickness of plate and

distributed uniformly over small local areas, i. e.;

the piece-wise uniform thickness-through

damages. Figure 1 shows a piece-wise uniform

thickness-through damage over a small area 4xy,
centered at (Xd, Yd). The piece-wise uniform

damage can be represented by

d(x, y)=D(H(xci)-H(xdti))[H(ycy) -H(YdtY)] (28)

where O::;:D::::: 1 is the damage magnitude

uniformly distributed over the area of 4xy, and H
(z) is the Heaviside's unit function defined by

H(z) ={I when z>O
o when z<O

Substituting Eq. (28) into Eq. (21) gives the

DIM for the plate with a single damage at (Xd,

Yd) as follows:

(30)

where

l<d

Fig. 1 A piece-wise uniform thickness-through

damage

where Ds. (Xdi, Ydi), 2xj, and 2Y'; represent the

magnitude, location, and the dimensions of the j
-th local damage, respectively.

(33)

(32)
N

A.,p=2: kfzpDj (j=l, 2, ... , N)
1=1

l Yd+Y [ Xd+X
kap= _ _ <Pap (X, y) dxdv

y..-y x,,-x

(30) and (31) can be further

for the plate with N damages as

where

Equations

generalized
follows:

6.Qa (t) = 2: QArQp 2 e'" (26)
p a-W

Substituting Eqs. (16) and (26) into Eq. (23)

and its result into Eq. (17) yields the forced

vibration response for the damaged plate as

w(x,Y, t)=[~ Wa(x,~~:V\XF'YF)

+~~A. W.(x,Y) W,(xF,YF)]F,eidt=W(x y)eidt (27)
• I I 12 -J Ql-ul 0 ,

The structural damping can be readily taken

into account in the previous formulations, if

needed, by simply replacing the flexural rigidity

K and natural frequencies Qa with K (1+ i7J) and
Qa (I + ir;) 1/2, respectively: where 7J is the struc­

tural damping factor (or loss factor) (Meirovitch,

1980) . One may use the 'equivalent' loss factor for

the case of non-structural damping. However, the

damping will not be considered in the present
study, for brevity, in order to focus our

discussions on the effects of damage only.

2.4 Damage influence matrix
Equation (21) shows that DIM depends on

both mode shapes and damage distribution over

the plate. Though the present discussion can be
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3. Numerical Illustrations and
Discussions

Fig. 2 Illustrative problems: the simply supported
rectangular plates with (a) a single damage,
and (b) two damages

increases. However, they decrease momentary at a

certain vibration mode if the nodes of the mode

are very near to or inside of damaged small zones.

For instance, the values of t6 and~ in Table
I are decreased because a node of the (22, 22) and

(44, 44) modes coincide with damage location.

Equation (32) shows that, in general, DIM
becomes larger as the magnitudes of damages
increase. The off-diagonal terms of DIM, which

represent the DIMC or the indirect effects of

damage, are relatively small when compared with

the diagonal terms. As can be proved from Eq.

(21) by using the orthogonality property for

natural modes, the off-diagonal terms vanish com-

Table 2 Non-dimensionalized damage influence
matrix (knr./,Iull) for the simply-support­
ed rectangular plate with two damages:
D,.=Dz=0.5; xD/=0.2m, YD/=0.3m, XD2=

O.lm, Ym=O.4m; 2xj=2xz=2Yj=2J12=0.

02m; ,11111=275.15

Table 1 Non-dimensionalized damage influence
matrix (Annr./,Iuu) for the simply-support­
ed rectangular plate with a single damage:
D=0.5 ; xD=0.2m : YD=0.3m; 2x=2Y=0.

02m; ,1uu = 193.25

~ (J 1) (2 2) (3 3) (44) (5 5) (9 9)
(r.s)

..,

(1 1) 1.0 0.00 -2.84 0.00 0.00 .. , 8.89

(2 2) 0.02 0.00 0.00 0.00 .. , 0.00--(3 3) 13.80 0.00 0.00 .., -25.23
-
(44) 0.10 0.00 .. , 0.00--(5 5) ,Ian,... 26.33 ... 0.00-- ,1uu

---=-- SYMMETRIC
...

(9 9) 79.11

~ (I I) (2 2) (3 3) (44) (5 5)
(r.s)

.., (9 9)

(J I) 1.0 0.47 -2.43 1.39 0.95 .., 5.58

~ 0.67 - 1.25 1.14 0.33 ... 0.23

(3 3) 9.87 -2.25 -2.36 ... -15.57--(44) 3.90 1.99 .. , 3.10--(5 5) A-rs 15.88 ..- 6.22
-

,11111
--=-- SYMMETRIC

..,

(9 9) 48.79

,
D2='0.5 ~

• (O·tO.45)

._.~__....D.~~a..5... ~
~(O.2.0.3) ci
i

\

E
(l)

ci

I
i--.--

(o.2f·3)

I

y

Equations (20) and (27) show that damage

-induced changes in natural frequencies and vi­

bration response of a plate mainly depend on
damage characteristics such as the locations (Xc(i,

Yc(i), dimensions (2Xi,2Yi) and magnitudes (Di)
of damages. Equations (20) and (27) also show

that the accuracy of the predicted natural fre­

quencies and vibration response of a damaged

plate depends on how many modal parameters (i.
e.; natural modes and natural frequencies) of the

intact plate are taken into account in the analysis

and on whether the DIMC U. e., the off-diagonal

terms of DIM) is neglected or not. To
numerically investigate above issues, the simply

supported rectangular plates with one and two

identical piece-wise uniform damages, as shown

in Fig. 2, are considered as the illustrative

problems. The plates have the thickness 0.4 em
and the dimensions 0.4 m and 0.6 m in the x- and

y-directions, respectively. The material properties

of the plates are the intact Young's modulus E=
72 CPa, Poisson's ratio 1/=0.3, and the mass

density 2800 kglm3
•

The DIM for the plate with a single damage is

given in Table 1. Similarly, the DIM for the plate

with two damages is given in Table 2. Tables I

and 2 show that, as a general rule, the diagonal

terms of DIM (i.e., direct effects of damages)

increase in magnitude as the mode number
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3.5 ...... DIMC Included
- DIMC Excluded

ffi', ,
--..- ..... ~I 0

x
OAm

o

·15

·20

- Intact Plale
- DIMC Included
- DIMC Excll.<led

500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Fig. 4 Effects of damage-induced modal coupling
(DIMC) on the 'inertance' FRF of the simply
supported plate with a single damage.

-- DIMC Included
- DIMC Excluded

y

tr~CIT.
DAm

Fig. 3 Damage-induced modal coupling (DIMC)
dependence of the changes in natural fre­
quencies of the simply supported plate with
(a) a single damage and (2) two damages

pletely when damage is uniformly distributed

over the whole plate, regardless of its magnitude.

Figure 3 shows the effects of DIMC on the
damage-induced (percent) changes in natural

frequencies of plate. Neglecting DIMC seems to

underestimate the damage-induced changes in

natural frequencies. In general, the effects of
DIMC on the changes in natural frequencies are

found to be negligible, especially when the dam­

age is very weak. However, it is desirable to

include the DIMC in the analysis because

damages are not known in prior for most

practical cases. Figure 3 shows that in general the
damage-induced changes in natural frequencies at

the lower modes are larger than those at the

higher modes. The damage-induced changes in

natural frequencies become negligible as the mode

number increases and highly depend on mode

number and damage location. If damages are

located at the nodes of a mode, the damage­

induced changes in the natural frequency of the
corresponding mode become very small. For in­

stance, the damage-induced changes in natural

frequencies are very small for (12, 12) and (21,

21) modes. Figure 4 compares the changes in the

inertance FRF depending on whether the DIMC
is included or not in the computation of FRF.

The change in the inertance FRF, ~enter, is
defined as the difference between the inertance

FRF of damaged plate from that of intact plate,

all measured at the center of plate. In general, the
damage tends to reduce the amplitude of FRF,

but the effects of DIMC on the changes in FRFs
are very small.

Though a sufficiently large number of modal

parameters of intact plate are required for accu­

rate prediction of the effects of damage, only a

limited number of the lower modal parameters are

available from the modal testing or the theoretical
modal analysis. Thus, the errors due to the

omitted (higher) modes will be inevitable. Figure

5 shows the ratios of the omitted modes-induced

errors in natural frequencies to the damage
-Induced changes in natural frequencies for the

simply supported plate with a single damage. The

omitted modes-induced errors in natural fre­

quencies, denoted by LlQ (omitted modes) in the

figure, are defined by the differences of the exact
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,
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I
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i ~

o

y

_0.06

10.05

~O.

10.03

10.0

Si 0.01

18 25 38 49 64 81
Total NLmber of Na1Inl Modes Used in the Analysis (n)

Fig. 5 The ratios of the omitted modes-induced
errors in natural frequencies to the damage­
induced changes in natural frequencies for the
simply supported plate with a single damage.

Fig. 6 The ratios of the omitted modes-induced
errors in inertance FRFs to the damage­
induced changes in inertance FRFs for two
different damage magnitudes.

natural frequencies of damaged plate from the
approximate ones calculated by using a finite
number of natural modes. On the other hand, the
damage-induced changes in natural frequencies,
denoted by ~.Q(damage) in the figures, are
defined by the differences of the exact natural
frequencies of intact plate from those of damaged
plate. The exact natural frequencies of intact plate
are readily available from Blevins (1979), wheras
those for damaged plate are computed from Eq.
(20) by taking into account a sufficient number of
natural modes of intact plate: i.e., 144 natural
modes. It is important to remind that the omitted
modes-induced errors should be much smaller
than pure damage-induced changes for reliable
damage identification. Because the damage
considered for Fig. 5 is located at a node of the
(12, 12) and (21, 21) modes, about 25 and 16
natural modes are required for ~12 and .Q.;121,

respectively, to lower the omitted modes-induced
errors 2 % below the damage-induced errors. The
numbers of natural modes required for ~12 and
.Q.;121 are much larger than required for the other
natural frequencies of which modes have not a
node at the damage location. This means that, if
damages are located at the nodes of a mode, the
omitted modes-induced errors for the natural fre­
quency corresponding to the mode become very
significant. Figure 6 shows the ratios of the
omitted modes-induced errors in inertance FRFs

to the damage-induced changes in inertance
FRFs for two different damage magnitudes. The
inertance FRFs are measured at the midpoint of
plate by applying a harmonic point force of (J)=

100 Hz at the same point. Figure 6 shows that
about 16 and 25 natural modes should be
considered when D=0.5 and D=0.05, respec­
tively, to lower the omitted modes-induced errors
2 % below the pure damage-induced errors. In
general, a larger number of natural modes will be
required for weakly damaged plates to reduce the
omitted modes-induced errors to a required level.

The damage-induced changes in natural fre­
quencies depending on the magnitude and loca­
tion of a single damage are shown in Figs. 7 and
8, respectively. As can be hinted from Eq. (20),
Fig. 7 shows that the damage-induced changes in
natural frequencies increase almost in proportion
to damage magnitudes. It can be observed from
Figs. 7 and 8 that the sensitivity of the natural
frequency to damage location is relatively high at
the lower modes and the damage-induced
changes in natural frequencies become negligible
at the higher modes. It can be also observed from
Figs. 7 and 8 that the damage-induced changes in .
natural frequencies are very small when the dam­
age is located at a node of the corresponding
vibration mode.

The effects of damage magnitude and location
on the vibration amplitude at the middle of plate
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J

Time (s)

0.'
~ ~,- __~__~ ........ "-__..J

·2

- '
~
- 0

I
J . ,

Fig. 10 Damage location dependence of the dis­
placement at the center of damaged plate:
D=0.5 ; 2.i"=2y=0.02m

O.'m

(IQ.l l ) (12. 12) (13.13) (21 .2 1) (22. 22) (23.23) (3 1.3 1) (32.32) (33.33)
Mode Number (mn. ra)

Fig. 7 Damage magnitude dependence of the chan­
ges in natural frequencies of damaged plate:
xD=0.2m; YD=0.3m ; 2x=2Y=0.02m

4. Conclusions

In this study, the dynamic equation of motion is

derived for damaged plates by introducing a

damage distribution function to characterize the

damage state. It is found that structural damages

result in the coupling between modal coordinates.
The effects of damages on the vibration

characteristics of a plate depending on their

locations, sizes, and magnitudes are numerically

investigated. It is found that the damaged
-induced changes in natural frequencies are much

larger at the lower modes, but strongly dependent

on damage locations. The numerical simulations

show that the effects of damage-induced modal

coupling on the changes in vibration
characteristics are negligible for the example

problems. It is also found that a sufficiently large

number of natural modes should be used in the

analysis to lower the omitted modes-induced

errors in the vibration characteristics of the

damaged plate far below the pure damage
-induced errors.

found that the vibration amplitude increases as

the damage magnitude increases for the present

example problem. Figure 10 shows that the effects
of damage on the vibration amplitude become

larger when the damage is located near the

boundary rather than when it is located at the

middle of plate.

O.'m

'r--..--.......-....---.......- ......---.--....,.---,

(It 11) (12.12) (13.13) (21.21) (22.22) (23.23) (31.31) (32.32) (33. 33 )
loIooe Number (mn. ra)

J
Time (s)

Fig. 9 Damage magnitude dependence of the dis­
placement at the center of damaged plate :
xD=0.2m ;YD= 0.3m ; 2x=2Y=0.02m

3.5

are shown in Fig . 9 and Fig. 10, respectively. It is

Fig. 8 Damage location dependence of the changes
in natural frequencies of damaged plate : D=

0.5 ; 2.i"=2Y=0.02m
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